Golden Tiger Claw
题意
给一个n*n的矩阵,每个格子中有正整数w[i[j],试为每行和每列分别确定一个数字row[i]和col[i],使得任意格子w[i][j]<=row[i]+col[j]恒成立。先输row,再输出col,再输出全部总和(总和应尽量小)。
思路
本题与匹配无关,但可以用KM算法解决。
KM算法中的顶标就是保持了Lx[i]+ly[j]>=g[i[j]再求最大权和匹配的,但这个最大权和并没有关系。我们可以将row[i]看成一个男的,col[i]看成一个女的,这样男女的总数就相等。
一般来说,Lx[i]或Ly[i]仅需要取该行/列中最大的那个数即可保证满足要求,但是这样太大了,可以通过调整来使得总和更小。而KM算法的过程就是一个调整的过程,每一对匹配的男女的那条边的权值就会满足等号 wi[j]=row[i]+col[j],至少需要一个来满足等号,这样才能保证row[i]+col[j]是达到最小的,即从j列看,col[j]满足条件且最小,从i行看,row[i]满足条件且最小。这刚好与KM算法求最大权和一样。
1 |
|